Applications of the Dual System Encryption Approach to Threshold Cryptography

Benoît Libert\(^1\) and Moti Yung\(^2\)

\(^1\)Université catholique de Louvain, Crypto Group – F.N.R.S.
\(^2\)Google Inc. and Columbia University

June 30, 2011

Dagstuhl Seminar
Threshold Cryptography

- Introduced by Desmedt-Frankel (Crypto’89) and Boyd (IMA’89)
- Split private keys into \(n \) shares \(SK_1, \ldots, SK_n \) so that knowing strictly less than \(t \leq n \) shares is useless to the adversary.
- At least \(t \leq n \) shareholders must contribute to private key operations.
 - Decryption requires the cooperation of \(t \) decryption servers.
 - Signing requires at least \(t \) servers to run a joint signing protocol.
- **Robustness**: up to \(t - 1 \leq n \) malicious servers cannot prevent a honest majority from decrypting/signing.
Static vs Adaptive corruptions

- **Static corruptions**: adversary corrupts servers *before* seeing the public key.

Robust threshold cryptosystems with IND-CCA2 security:

- Shoup-Gennaro (Eurocrypt’98): in the ROM.
- Canetti-Goldwasser (Eurocrypt’99): requires interaction or storage of many pre-shared secrets; robust and adaptively secure for \(t = O(n^{1/2}) \).
- Dodis-Katz (TCC’05): generic constructions; ciphertexts of size \(O(n) \).
- Boneh-Boyen-Halevi (CT-RSA’06): no interaction needed for robustness.
- Wee (Eurocrypt’11): generic constructions from (threshold) extractable hash proof systems.
Static vs Adaptive corruptions

- Adaptive corruptions: adversary corrupts up to $t - 1$ servers \textit{at any time}.

 - Canetti \textit{et al.} (Crypto’99): shares refreshed after each private key operations.

 - Jarecki-Lysyanskaya (Eurocrypt’00): no need for erasures, but interaction.

 - Lysyanskaya-Peikert (Asiacrypt’01): adaptively secure signatures with interaction.

 - Abe-Fehr (Crypto’04): adaptively secure UC-secure threshold signatures and encryption with interaction.
Despite more than 10 years of research, adaptive security has not been achieved with:

- CCA2-security for encryption and CMA-security for signatures.
- Non-interactive schemes
- Robustness against malicious adversaries
- Optimal resilience \(t = (n - 1)/2 \)
- No erasures for shareholders
- Share size independent of \(t, n \)
- Proof in the standard model
CCA2-Secure Non-interactive Threshold Encryption

Our contribution (ICALP'11):

- The first adaptively secure non-interactive threshold cryptosystem providing
 - CCA2 security and robustness w/o random oracles
 - Short (i.e., $O(1)$-size) private key shares

The construction

- Builds on the dual system encryption approach (Waters, Crypto’09) and the Lewko-Waters techniques (TCC’10).
- Handles adaptive corruptions by instantiating Boneh-Boyen-Halevi (CT-RSA’06) in bilinear groups of order $N = p_1p_2p_3$.

- Gives adaptively secure non-interactive threshold signatures
CCA2-Secure Non-interactive Threshold Encryption

An alternative approach:

- **Combination between**

 - Universal hash proofs (simulator knows private keys in reduction).

 - Simulation-sound proofs of ciphertext validity.

- **Gives constructions in prime order groups**

 - Based on Groth-Sahai proofs (Decision Linear or Symmetric eXternal Diffie-Hellman assumptions).

 - Or, more efficiently, based on DDH and the random oracle model.

 ⇒ Gives an adaptively secure version of the Shoup-Gennaro system.
Chosen-ciphertext (IND-CCA) security:

1. Challenger generates \(PK, \ SK = (SK_1, \ldots, SK_n) \) and gives \(PK \) to \(A \).

2. \(A \) makes adaptive queries
 - Corruption \(i \in \{1, \ldots, n\} \): \(A \) receives \(SK_i \) (up to \(t - 1 \) queries allowed).
 - Decryption \((i, C)\): \(A \) receives \(\mu_i = \text{Share-Decrypt}(PK, i, SK_i, C) \)

3. \(A \) chooses \(M_0, M_1 \) and gets \(C^* = \text{Encrypt}(PK, M_\beta) \) for some \(\beta \overset{R}{\leftarrow} \{0, 1\} \).

4. \(A \) makes further queries with restrictions.

5. \(A \) outputs \(\beta' \in \{0, 1\} \) and wins if \(\beta' = \beta \).
Security of Non-interactive Threshold Encryption

Chosen-ciphertext (IND-CCA) security:

1. Challenger generates PK, $SK = (SK_1, \ldots, SK_n)$ and gives PK to A.
2. A makes adaptive queries
 - Corruption $i \in \{1, \ldots, n\}$: A receives SK_i (up to $t - 1$ queries allowed).
 - Decryption (i, C): A receives $\mu_i = \text{Share-Decrypt}(PK, i, SK_i, C)$
3. A chooses M_0, M_1 and gets $C^* = \text{Encrypt}(PK, M_\beta)$ for some $\beta \overset{R}{\leftarrow} \{0, 1\}$.
4. A makes further queries with restrictions.
5. A outputs $\beta' \in \{0, 1\}$ and wins if $\beta' = \beta$.
Chosen-ciphertext (IND-CCA) security:

1. Challenger generates $PK, SK = (SK_1, \ldots, SK_n)$ and gives PK to A.
2. A makes adaptive queries
 - Corruption $i \in \{1, \ldots, n\}$: A receives SK_i (up to $t-1$ queries allowed).
 - Decryption (i, C): A receives $\mu_i = \text{Share-Decrypt}(PK, i, SK_i, C)$
3. A chooses M_0, M_1 and gets $C^* = \text{Encrypt}(PK, M_\beta)$ for some $\beta \xleftarrow{R} \{0, 1\}$.
4. A makes further queries with restrictions.
5. A outputs $\beta' \in \{0, 1\}$ and wins if $\beta' = \beta$.
Security of Non-interactive Threshold Encryption

- Chosen-ciphertext (IND-CCA) security:

1. Challenger generates $PK, SK = (SK_1, \ldots, SK_n)$ and gives PK to A.
2. A makes adaptive queries
 - Corruption $i \in \{1, \ldots, n\}$: A receives SK_i (up to $t-1$ queries allowed).
 - Decryption (i, C): A receives $\mu_i = \text{Share-Decrypt}(PK, i, SK_i, C)$
3. A chooses M_0, M_1 and gets $C^* = \text{Encrypt}(PK, M_\beta)$ for some $\beta \overset{R}{\leftarrow} \{0, 1\}$.
4. A makes further queries with restrictions.
5. A outputs $\beta' \in \{0, 1\}$ and wins if $\beta' = \beta$.
Security of Non-interactive Threshold Encryption

- Chosen-ciphertext (IND-CCA) security:

1. Challenger generates \(PK, SK = (SK_1, \ldots, SK_n) \) and gives \(PK \) to \(A \).

2. \(A \) makes adaptive queries
 - Corruption \(i \in \{1, \ldots, n\} \): \(A \) receives \(SK_i \) (up to \(t - 1 \) queries allowed).
 - Decryption \((i, C) \): \(A \) receives \(\mu_i = \text{Share-Decrypt}(PK, i, SK_i, C) \)

3. \(A \) chooses \(M_0, M_1 \) and gets \(C^* = \text{Encrypt}(PK, M_\beta) \) for some \(\beta \overset{R}{\leftarrow} \{0, 1\} \).

4. \(A \) makes further queries with restrictions.

5. \(A \) outputs \(\beta' \in \{0, 1\} \) and wins if \(\beta' = \beta \).
Consistency:

1. Challenger generates $PK, SK = (SK_1, \ldots, SK_n)$ and gives PK to A.

2. A makes adaptive queries
 - Corruption query $i \in \{1, \ldots, n\}$: A receives SK_i.
 - Decryption query (i, C): A receives $\mu_i = \text{Share-Decrypt}(PK, i, SK_i, C)$

3. A outputs a ciphertext C and sets $S = \{\mu_1, \ldots, \mu_t\}, S' = \{\mu'_1, \ldots, \mu'_t\}$ of shares such that
 - C is a valid ciphertext.
 - S and S' are sets of valid shares.
 - $\text{Combine}(PK, C, S) \neq \text{Combine}(PK, C, S')$.
Construction: Intuition

- Construction based on groups \((G, G_T)\) of order \(N = p_1p_2p_3\) with a bilinear map (a.k.a. pairing) \(e : G \times G \rightarrow G_T:\)

\[e(g_i, g_j) = 1_{G_T} \text{ for any } g_i \in G_{p_i} \text{ and } g_j \in G_{p_j} \text{ s.t. } i \neq j. \]

- Applies dual system encryption techniques (Waters, Crypto’09).
 - Use of semi-functional ciphertexts and decryption shares (i.e., with \(G_{p_2}\) components)

- Applies the Canetti-Halevi-Katz transform (Eurocrypt’04) to the Lewko-Waters IBE (TCC’10)

- …with additional tricks to deal with adaptive corruptions
Construction

- **Keygen**$(\lambda, t, n) : (1 \leq t \leq n)$

 - Choose bilinear groups $(\mathbb{G}, \mathbb{G}_T)$ of order $N = p_1 p_2 p_3$ and group elements $g, h, u, v \overset{R}{\leftarrow} \mathbb{G}_{p_1}$, $X_3 \overset{R}{\leftarrow} \mathbb{G}_{p_3}$.

 - Choose a polynomial $P[X] = \alpha + \alpha_1 X + \cdots + \alpha_{t-1} X^{t-1} \overset{R}{\leftarrow} \mathbb{Z}_N[X]$.

 - Choose a collision-resistant hash function $H : \{0, 1\}^* \rightarrow \mathbb{Z}_N$.

 - Define private key shares $\{SK_i = h^{P(i)} \cdot Z_{3,i}\}_{i=1}^n$ with $Z_{3,i} \overset{R}{\leftarrow} \mathbb{G}_{p_3}$ and set

 $$PK = \left(g, h, u, v \in \mathbb{G}_{p_1}; \ X_3 \in \mathbb{G}_{p_3}; \ e(g, h)^\alpha, \ \{VK_i = e(g, h)^{P(i)}\}_{i=1}^n; \ H \right).$$

- **Encrypt**(PK, M) : choose $s \overset{R}{\leftarrow} \mathbb{Z}_N$ and compute

 $$(C_0, C_1, C_2) = \left(M \cdot e(g, h)^{\alpha \cdot s}, \ g^s, (u^\theta \cdot v)^s \right)$$

 with $\theta = H(C_0, C_1) \in \mathbb{Z}_N$.
Construction

- **Keygen(λ, t, n)**: $(1 \leq t \leq n)$
 - Choose bilinear groups (G, \hat{G}) of order $N = p_1 p_2 p_3$ and group elements $g, h, u, v \leftarrow \hat{G}_{p_1}$, $X_3 \leftarrow \hat{G}_{p_3}$.
 - Choose a polynomial $P[X] = \alpha + \alpha_1 X + \cdots + \alpha_{t-1} X^{t-1} \leftarrow \mathbb{Z}_N[X]$.
 - Choose a collision-resistant hash function $H : \{0, 1\}^* \rightarrow \mathbb{Z}_N$.
 - Define private key shares $\{SK_i = h^{P(i)} \cdot Z_{3,i}\}_{i=1}^n$ with $Z_{3,i} \leftarrow \hat{G}_{p_3}$ and set
 $$PK = \left(g, h, u, v \in \hat{G}_{p_1}; \ X_3 \in \hat{G}_{p_3}; \ e(g, h)^\alpha, \ \{VK_i = e(g, h)^{P(i)}\}_{i=1}^n; \ H \right).$$

- **Encrypt**(PK, M): choose $s \leftarrow \mathbb{Z}_N$ and compute
 $$(C_0, C_1, C_2) = (M \cdot e(g, h)^{\alpha \cdot s}, \ g^s, \ (u^\theta \cdot v)^s)$$
 with $\theta = H(C_0, C_1) \in \mathbb{Z}_N$.

Construction

- **Share-Decrypt** \((PK, i, SK_i, C)\): parse \(C\) as
 \[
 (C_0, C_1, C_2) = (M \cdot e(g, h)^{\alpha \cdot s}, g^s, (u^\theta \cdot v)^s).
 \]
 Return \(\bot\) if \(e(C_1, u^\theta \cdot v) \neq e(g, C_2)\) or if \(C_1\) or \(C_2\) has a \(\mathbb{G}_{p_3}\) component.
 Otherwise, pick \(r \leftarrow \mathbb{Z}_N\) \(R_{i,1}, R_{i,2} \leftarrow \mathbb{G}_{p_3}\) and return
 \[
 \mu_i = (D_{i,1}, D_{i,2}) = (SK_i \cdot (u^\theta \cdot v)^r \cdot R_{i,1}, g^r \cdot R_{i,2}).
 \]

- **Combine** \((PK, C, \{\mu_i\}_{i \in S})\): parses \(\mu_i\) as \((D_{i,1}, D_{i,2}) \in \mathbb{G}_{p_1 p_3}\) for each \(i\).
 Check that \(Share-Veify(PK, \mu_i) = 1\) for each \(i\). Compute
 \[
 (D_1, D_2) = (\prod_{i \in S} D_{i,1}^{\Delta_i, s(0)}, \prod_{i \in S} D_{i,2}^{\Delta_i, s(0)}) = (h^\alpha \cdot (u^\theta \cdot v)^\tilde{r} \cdot \tilde{R}_1, g^\tilde{r} \cdot \tilde{R}_2)
 \]
 Return
 \[
 M = C_0 \cdot e(C_1, D_1)^{-1} \cdot e(C_2, D_2).
 \]
Construction

- \textit{Share-Decrypt}(PK, i, SK_i, C) : parse C as

\[(C_0, C_1, C_2) = (M \cdot e(g, h)^{\alpha \cdot s}, g^s, (u^\theta \cdot v)^s).\]

- Return ⊥ if e(C_1, u^\theta \cdot v) \neq e(g, C_2) or if C_1 or C_2 has a \(\mathbb{G}_{p_3} \) component.

- Otherwise, pick \(r \overset{R}{\leftarrow} \mathbb{Z}_N \), \(R_{i,1}, R_{i,2} \overset{R}{\leftarrow} \mathbb{G}_{p_3} \) and return

\[\mu_i = (D_{i,1}, D_{i,2}) = (SK_i \cdot (u^\theta \cdot v)^r \cdot R_{i,1}, g^r \cdot R_{i,2}).\]

- \textit{Combine}(PK, C, \{\mu_i\}_{i \in S}) : parses \(\mu_i \) as \((D_{i,1}, D_{i,2}) \in \mathbb{G}_{p_1 p_3}\) for each \(i \). Check that \textit{Share-Verify}(PK, \mu_i) = 1 for each \(i \). Compute

\[(D_1, D_2) = (\prod_{i \in S} D_{i,1}^{\Delta_i, s(0)}, \prod_{i \in S} D_{i,2}^{\Delta_i, s(0)}) = (h^\alpha \cdot (u^\theta \cdot v)^{\tilde{r}} \cdot \tilde{R}_1, g^{\tilde{r}} \cdot \tilde{R}_2)\]

Return

\[M = C_0 \cdot e(C_1, D_1)^{-1} \cdot e(C_2, D_2).\]
Security

Theorem

The scheme provides **IND-CCA** security under adaptive corruptions if

- $H : \{0, 1\}^* \rightarrow \mathbb{Z}_N$ is a collision-resistant hash function.

- Assumptions 1, 2 and 3 hold in (G, G_T).

1. Given $(g \in G_{p_1}, X_3 \in G_{p_3})$, $T \in_R G_{p_1}$ and $T \in_R G_{p_1p_2}$ are indistinguishable.

2. Given $(g \in G_{p_1}, X_3 \in G_{p_3}, X_1 X_2 \in G_{p_1p_2}, Y_2 Y_3 \in G_{p_2p_3})$, $T \in_R G_{p_1p_3}$ and $T \in_R G$ are indistinguishable.

3. Given $(g \in G_{p_1}, Z_2 \in G_{p_2}, X_3 \in G_{p_3}, g^s X_2 \in G_{p_1p_2}, g^\alpha Y_2 \in G_{p_1p_2})$, no PPT can distinguish $T = e(g, g)^{\alpha \cdot s} \in G_{T,p_1}$ from $T \in_R G_T$.

Theorem

The scheme provides **consistency** if Assumption 1 holds in G.
The proof

- Uses semi-functional ciphertext and decryption shares (i.e., that contain G_{p_2} components).

- Differences with Lewko-Waters (TCC’10):
 - Two kinds of semi-functional ciphertexts (with or without G_{T,p_2} component)
 - Also uses semi-functional *private key shares* SK_1, \ldots, SK_n
 - Additional step needed in the proof
The proof in the IND-CPA case

Ciphertext is \((C_0, C_1) = (M \cdot e(g, h)^{\alpha \cdot s}, g^s)\):

- Uses two kinds of semi-functional ciphertexts with \(\tau, \theta \leftarrow \mathbb{Z}_{p_2}\)
 - Type I: \(C_0 = M^\beta \cdot e(g, h)^{\alpha \cdot s}, \quad C_1 = g^s \cdot g^\tau\).
 - Type II: \(C_0 = M^\beta \cdot e(g, h)^{\alpha \cdot s} \cdot e(g_2, g_2)^\theta, \quad C_1 = g^s \cdot g_2^\tau\).

- ... and semi-functional key shares: \(SK_i = h^{P(i)} \cdot R_{2,i} \cdot R_{3,i}\), with \(R_{2,i} \leftarrow \mathbb{G}_{p_2}\).

- Uses a sequence of games where Game_0 is the real game
 - Game_1: ciphertext is a Type I semi-functional ciphertext.
 - Game_2: — Ciphertext is a Type II semi-functional ciphertext
 — All private key shares are semi-functional.
 - Game_3: ciphertext is a Type II encryption of a random \(M \leftarrow \mathbb{G}_T\).
The proof in the IND-CPA case

Ciphertext is \((C_0, C_1) = (M \cdot e(g, h)^{\alpha \cdot s}, g^s)\):

- Uses two kinds of semi-functional ciphertexts with \(\tau, \theta \leftarrow \mathbb{Z}_{p_2}\)
 - Type I: \(C_0 = M_\beta \cdot e(g, h)^{\alpha \cdot s}, \quad C_1 = g^s \cdot g_2^\tau\).
 - Type II: \(C_0 = M_\beta \cdot e(g, h)^{\alpha \cdot s} \cdot e(g_2, g_2)^\theta, \quad C_1 = g^s \cdot g_2^\tau\).

- ... and semi-functional key shares: \(SK_i = h^{P(i)} \cdot R_{2,i} \cdot R_{3,i}\), with \(R_{2,i} \leftarrow \mathbb{G}_{p_2}\).

- Uses a sequence of games where Game_0 is the real game
 - Game_1: ciphertext is a Type I semi-functional ciphertext.
 - Game_2: ciphertext is a Type II semi-functional ciphertext
 - All private key shares are semi-functional.
 - Game_3: ciphertext is a Type II encryption of a random \(M \leftarrow \mathbb{G}_T\).
Extensions

- Robust and adaptively secure non-interactive threshold signatures in the standard model.

- Forward-security in threshold cryptography: past uses of private keys remain safe even after t corruptions (Abdalla-Miner-Namprempre, CT-RSA’01)
 - Forward-secure threshold encryption (with short ciphertexts from the Lewko-Waters HIBE)
 - Forward-secure threshold signatures (by thresholdizing Boyen-Shacham-Shen-Waters, CCS’06)

...all with adaptive security in the standard model and w/o interaction for signing/decrypting or updates.
An alternative approach

Builds on Groth-Sahai proofs and the Decision Linear assumption:

- **Linear Problem**: given \((g, g_1, g_2, g_1^a, g_2^b, Z)\), decide if \(Z = g^{a+b}\).

- Equivalently, given

 \[
 \vec{g}_1 = (g_1, 1, g), \quad \vec{g}_2 = (1, g_2, g), \quad \vec{\phi} = (g_1^a, g_2^b, Z),
 \]

 decide whether \(\vec{g}_1, \vec{g}_2, \vec{\phi}\) are linearly dependent (i.e., \(\vec{\phi} = \vec{g}_1^a \cdot \vec{g}_2^b\)).

- To commit to \(x \in \mathbb{Z}_p\), set \(\vec{C} = \vec{\phi}^x \cdot \vec{g}_1^{t_1} \cdot \vec{g}_2^{t_2}\).

- **Dual mode commitments**:
 - Perfect binding commitments and perfectly sound proofs if \(\vec{\phi} \notin \text{span}(\vec{g}_1, \vec{g}_2)\).
 - Perfectly hiding commitments and WI proofs if \(\vec{\phi} \in \text{span}(\vec{g}_1, \vec{g}_2)\).
Construction in prime order groups

- Use Damgaard’s Elgamal with $PK = (g, g_1, g_2, X_1 = g_1^{x_1} g^z, X_2 = g_2^{x_2} g^z)$.

 $C_0 = M \cdot X_1^r \cdot X_2^s, \quad C_1 = g_1^r, \quad C_2 = g_2^s, \quad C_3 = g^{r+s}$

- Add a simulation-sound proof that $(C_1, C_2, C_3) = (g_1^r, g_2^s, g^{r+s})$ using a CRS $(\vec{g}_1, \vec{g}_2, (\varphi_1, \varphi_2, \varphi_3 \cdot g^{VK}))$ where $(SK, VK) \leftarrow G(\lambda)$ is a one-time key pair.

- Security proof works:
 - CRS is only WI for the challenge ciphertext and only the challenger can generate one fake proof.
 - Adversary can only prove true statements.
 - Simulator knows the decryption keys (as in HPS-based proofs).
Efficiency comparisons

- Estimations at the 128-bit security level

<table>
<thead>
<tr>
<th>Approaches</th>
<th>Group order</th>
<th>Assumptions</th>
<th>Ciphertext overhead (# of bits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dual system</td>
<td>$N = p_1p_2p_3 > 2^{3072}$</td>
<td>Assumptions 1-2-3</td>
<td>6144</td>
</tr>
<tr>
<td>NIZK proofs + HPS</td>
<td>$p > 2^{512}$</td>
<td>DLIN</td>
<td>10240</td>
</tr>
<tr>
<td>NIZK proofs + HPS</td>
<td>$p > 2^{256}$</td>
<td>SXDH</td>
<td>3328</td>
</tr>
</tbody>
</table>

Figure: Comparisons in terms of ciphertext overhead

- Under DLIN: 12 pairings to check ciphertexts (using batch-verification); sender computes 19 exponentiations.
- Under SXDH: only 6 pairings to check ciphertexts (with batch-verification); sender computes 7 exponentiations.
Conclusion

- We described
 - CCA2-secure robust and non-interactive threshold cryptosystems secure against adaptive corruptions (with short private key shares)
 - Using the dual system technique
 - ... or a combination of hash proof systems with publicly verifiable (one-time) simulation-sound proofs
 - The first non-interactive threshold signature w/o random oracles in the adaptive corruption setting

- Open problems:
 - Can we achieve proactive security?
 - Have a distributed key generation protocol